Decision support system for ultrasound inspection of fiber metal laminates using statistical signal processing and neural networks.
نویسندگان
چکیده
The growth of the aerospace industry has motivated the development of alternative materials. The fiber-metal laminate composites (FML) may replace the monolithic aluminum alloys in aircrafts structure as they present some advantages, such as higher stiffness, lower density and longer lifetime. However, a great variety of deformation modes can lead to failures in these composites and the degradation mechanisms are hard to detect in early stages through regular ultrasonic inspection. This paper aims at the automatic detection of defects (such as fiber fracture and delamination) in fiber-metal laminates composites through ultrasonic testing in the immersion pulse-echo configuration. For this, a neural network based decision support system was designed. The preprocessing stage (feature extraction) comprises Fourier transform and statistical signal processing techniques (Principal Component Analysis and Independent Component Analysis) aiming at extracting discriminant information and reduce redundancy in the set of features. Through the proposed system, classification efficiencies of ~99% were achieved and the misclassification of signatures corresponding to defects was almost eliminated.
منابع مشابه
A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملModeling of the Fatigue Life of Fiber Metal Laminates under Low Velocity Impact by Finite Element Method
In this study, first by using the finite element method, fatigue life of fiber metal laminates of Glare type subjected to impact was obtained and the numerical results of the model were compared with the experimental results. With regard to the very good matching between numerical and experimental results, then the results of the finite element model were generalized and expanded, and with usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 53 6 شماره
صفحات -
تاریخ انتشار 2013